User Tools

Site Tools


Built-in functions

Top: Frida handbook
Previous: Expressions
Next: Curves

The following, outdated list gives an idea of the rich collection of built-in functions that comes with Frida. An up-to-date list of built-in functions can be obtained from the running program by typing hf at the main command.

>  hf
Operators by precedence:
  ...
Built-in functions:
  ln(x): natural logarithm of x, or 0 if x<=0
  lg(x): decadic logarithm of x, or 0 if x<=0
  sqrt(x): square root of x, or 0 if x<0
  abs(x): absolute value of x
  exp(x): exponential function of x
  sin(x): sine of x (where x in radian)
  cos(x): cosine of x (where x in radian)
  tan(x): tangent of x (where x in radian)
  cot(x): cotangent of x (where x in radian)
  sind(x): sine of x (where x in degrees)
  cosd(x): cosine of x (where x in degrees)
  tand(x): tangent of x (where x in degrees)
  cotd(x): cotangent of x (where x in degrees)
  asin(x): arc sine of x (result is in radian; return 0 if |x|>1)
  acos(x): arc cosine of x (result is in radian; return 0 if |x|>1)
  atan(x): arc tangent of x (result is in radian)
  acot(x): arc cotangent of x (result is in radian)
  asind(x): arc sine of x (result is in degrees; return 0 if |x|>1)
  acosd(x): arc cosine of x (result is in degrees; return 0 if |x|>1)
  atand(x): arc tangent of x (result is in degrees)
  acotd(x): arc cotangent of x (result is in degrees)
  sinh(x): hyperbolic sine of x
  cosh(x): hyperbolic cosine of x
  tanh(x): hyperbolic tangent of x
  coth(x): hyperbolic tangent of x
  gamma(x): gamma function of x (i.e. factorial of x-1)
  erfP(x): ?
  erfQ(x): ?
  erf(x): error function of x
  erfc(x): complementary error function of x
  sinc(x): sinus cardinalis, sin(x)/x
  ceil(x): the smallest integer i with i>=x
  floor(x): the largest integer i with i<=x
  nint(x): the integer nearest to x
  min(x,y): the smaller of the two arguments x and y
  max(x,y): the smaller of the two arguments x and y
  ran(x,y): a random number between x and y
  kwwc(x,b): (*) Fourier transform \int_0^\infty dq \cos(xq) \exp(q^b)
  kwws(x,b): (*) Fourier transform \int_0^\infty dq \sin(xq) \exp(q^b)
    (*) For more info on kwwc and kwws, see http://joachimwuttke.de/kww/
  gauss(x,s): the normalized Gaussian exp(-x^2/2/s^2)/sqrt(2 pi)/s
  gnn(x,s): the unnormalized Gaussian exp(-x^2/2/s^2)
  cauchy(x,w): the Cauchy-Lorentz function ?/(x^2+w^2)
  q4w(x,y,z): ?
  cauchy2(x,y,z): ?
  skww(x,y,z): ?
  rehavneg(x,y,z): real part of the Havriliak-Negami function
  imhavneg(x,y,z): imaginary part of the Havriliak-Negamit function