### Site Tools

• oi = integral properties
• 1 simply z
• 2 one value x
• 3 one value y(x)
• 4 integral dx y(x)
• 5 value y_max
• 6 value y_min
• 7 position x of y_max
• 8 position x of y_min
• 9 match #K to #K-1
• 10 quality of match
• 11 match #K to #K'
• 12 quality of match
• 13 half width
• 14 integral-de-luxe
• 15 sum
• 16 average
• ox = pointwise operation on x
1. Function?
• 0 (= ) lhs = x
• 1 (ln ) lhs = ln x
• 2 (lg ) lhs = lg x
• 3 (e^ ) lhs = exp x
• 4 (^2 ) lhs = x^2
• 5 (^1/2 ) lhs = x^1/2
• 6 (10^ ) lhs = 10^x
• 7 (0- ) lhs = -x
• 8 (1/ ) lhs = 1/x
• 9 (|| ) lhs = |x|
• 11 (sin ) lhs = sin x
• 12 (asin ) lhs = asin x
• 13 (cos ) lhs = cos x
• 14 (acos ) lhs = acos x
• 16 (atan ) lhs = atan x
• 21 (sind ) lhs = sind x
• 22 (asind) lhs = asind x
• 23 (cosd ) lhs = cosd x
• 24 (acosd) lhs = acosd x
• 31 (sinh ) lhs = sinh x
• 32 (cosh ) lhs = cosh x
• 41 (Gamma) lhs = Gamma(x)
• Binary Operations :
• 50 (~ ) lhs = #2
• 51 (+ ) lhs = x+#2
• 52 (- ) lhs = x-#2
• 53 (~- ) lhs = #2-x
• 54 (* ) lhs = x*#2
• 55 (/ ) lhs = x/#2
• 56 (~/ ) lhs = #2/x
• 57 (^ ) lhs = x^#2
• 58 (min ) lhs = min(x,#2)
• 59 (max ) lhs = max(x,#2)
• 60 (mod ) lhs = x|#2
• Ida-defined functions :
• 81(q ) : lhs = q(2th=x;E0=#2)
• 82(tof_w) : lhs = tof(w=x;E0=#2)
• 83(w_tof) : lhs = w(tof=x;E0=#2)
• 84(Dki ) : lhs = Dki(w=x;E0=#2)
• 85(2th ) : lhs = 2th(q=x;E0=#2)
• 86(a_mct) : lhs = a_mct(lambda=x)
• 87(b_mct) : lhs = b_mct(lambda=x)
2. 2nd argument?
• ec : one value for all files, enter once
• ef : one value per file, enter per file
• if : one value per file, take from one-point-file
• r : one value per file, take a real parameter
• r2y : one value per file, take y'(real-par) from 2nd file
• es : one value per spectrum, enter per spectrum
• z<n>: one value per spectrum, take z<n>
• i : one value per spectrum, take y'(z) from 2nd file (integral file)
• i1 : one value per spectrum, take y'(z) from 2nd file (integral file, old 1dim version)
• ep : one value per point, enter per point
• x : one value per point, take x
• y : one value per point, take y
• d : one value per point, take d
• n : one value per point, take number of point
• y2 : one value per point, take y'(x) from 2nd file
• d2 : one value per point, take the error dy'(x) from 2nd file
• ^[ : escape
• oxs = dito, selected subrange
• same options as for ox
• oy = pointwise operation on y
• same options as for ox
• oys = dito, selected subrange
• same options as for ox
• oz = pointwise operation on z (also oz1, oz2, …)
• same options as for ox
• of = operate on y as function of x
• 1 delta x
• 2 delta y
• 3 dy / dx
• 4 I_a^x dx' y(x')
• 5 y*f(x)
• 6 y/f(x)
• ot = form tensor product.
CHECK THIS! Suppose you have one spectrum y(x), and you want to manipulate this spectrum for different values of a parameter p. A convenient way to achieve this is to expand y(x) into a file y(x,z), consisting of a set of identical spectra y(x) with z=p. You can either read z from another file or specify a regular grid.