User Tools

Site Tools


In the o-menu,

  • oi = integral properties
    • 1 simply z
    • 2 one value x
    • 3 one value y(x)
    • 4 integral dx y(x)
    • 5 value y_max
    • 6 value y_min
    • 7 position x of y_max
    • 8 position x of y_min
    • 9 match #K to #K-1
    • 10 quality of match
    • 11 match #K to #K'
    • 12 quality of match
    • 13 half width
    • 14 integral-de-luxe
    • 15 sum
    • 16 average
  • ox = pointwise operation on x
    1. Function?
      • 0 (= ) lhs = x
      • 1 (ln ) lhs = ln x
      • 2 (lg ) lhs = lg x
      • 3 (e^ ) lhs = exp x
      • 4 (^2 ) lhs = x^2
      • 5 (^1/2 ) lhs = x^1/2
      • 6 (10^ ) lhs = 10^x
      • 7 (0- ) lhs = -x
      • 8 (1/ ) lhs = 1/x
      • 9 (|| ) lhs = |x|
      • 11 (sin ) lhs = sin x
      • 12 (asin ) lhs = asin x
      • 13 (cos ) lhs = cos x
      • 14 (acos ) lhs = acos x
      • 16 (atan ) lhs = atan x
      • 21 (sind ) lhs = sind x
      • 22 (asind) lhs = asind x
      • 23 (cosd ) lhs = cosd x
      • 24 (acosd) lhs = acosd x
      • 31 (sinh ) lhs = sinh x
      • 32 (cosh ) lhs = cosh x
      • 41 (Gamma) lhs = Gamma(x)
      • Binary Operations :
        • 50 (~ ) lhs = #2
        • 51 (+ ) lhs = x+#2
        • 52 (- ) lhs = x-#2
        • 53 (~- ) lhs = #2-x
        • 54 (* ) lhs = x*#2
        • 55 (/ ) lhs = x/#2
        • 56 (~/ ) lhs = #2/x
        • 57 (^ ) lhs = x^#2
        • 58 (min ) lhs = min(x,#2)
        • 59 (max ) lhs = max(x,#2)
        • 60 (mod ) lhs = x|#2
      • Ida-defined functions :
        • 81(q ) : lhs = q(2th=x;E0=#2)
        • 82(tof_w) : lhs = tof(w=x;E0=#2)
        • 83(w_tof) : lhs = w(tof=x;E0=#2)
        • 84(Dki ) : lhs = Dki(w=x;E0=#2)
        • 85(2th ) : lhs = 2th(q=x;E0=#2)
        • 86(a_mct) : lhs = a_mct(lambda=x)
        • 87(b_mct) : lhs = b_mct(lambda=x)
    2. 2nd argument?
      • ec : one value for all files, enter once
      • ef : one value per file, enter per file
      • if : one value per file, take from one-point-file
      • r : one value per file, take a real parameter
      • r2y : one value per file, take y'(real-par) from 2nd file
      • es : one value per spectrum, enter per spectrum
      • z<n>: one value per spectrum, take z<n>
      • i : one value per spectrum, take y'(z) from 2nd file (integral file)
      • i1 : one value per spectrum, take y'(z) from 2nd file (integral file, old 1dim version)
      • ep : one value per point, enter per point
      • x : one value per point, take x
      • y : one value per point, take y
      • d : one value per point, take d
      • n : one value per point, take number of point
      • y2 : one value per point, take y'(x) from 2nd file
      • d2 : one value per point, take the error dy'(x) from 2nd file
      • ^[ : escape
  • oxs = dito, selected subrange
    • same options as for ox
  • oy = pointwise operation on y
    • same options as for ox
  • oys = dito, selected subrange
    • same options as for ox
  • oz = pointwise operation on z (also oz1, oz2, …)
    • same options as for ox
  • of = operate on y as function of x
    • 1 delta x
    • 2 delta y
    • 3 dy / dx
    • 4 I_a^x dx' y(x')
    • 5 y*f(x)
    • 6 y/f(x)
  • ot = form tensor product.
    CHECK THIS! Suppose you have one spectrum y(x), and you want to manipulate this spectrum for different values of a parameter p. A convenient way to achieve this is to expand y(x) into a file y(x,z), consisting of a set of identical spectra y(x) with z=p. You can either read z from another file or specify a regular grid.