nsxtool: Data Analysis for Crystal Diffraction

Jonathan Fisher
Scientific Computing Group
JCNS at MLZ

April 2017
Overview

- Started in 2013 by Laurent Chapon and Eric Pellegrini (ILL)
- JCNS joined collaboration early 2016
- Two full-time developers
- Intended to replace legacy and/or proprietary software:
 - ILL: suite of instrument-specific Fortran programs
 - FRM II: HKL2000 (commercial, closed-source)
- Requirements:
 - open source
 - modern language and compiler (C++11, gcc, clang, msvc)
 - depends only on open-source third-party libraries
 - multi-platform (Linux/Mac/Windows)
Design

- nsxtool = nsxqt + nsxlib
- nsxlib: general library for crystal diffraction data analysis
- nsxqt: GUI exposing main functionality of nsxlib
- Modern object-oriented design: instruments, sample, source, etc. represented by abstract interfaces
- Easily modified and extended
- Third-party dependencies are open-source and actively maintained: boost, eigen, gsl, hdf5, qt, ...
Features

- XML instrument definition, multiple geometries
- Automatic peak search (image filter + blob search)
- Unit cell determination and FFT auto-indexing
- Intensity integration
- Parameter refinement (unit cell, detector/sample offsets)
- Space group determination, extinction law
- Chemical formula parser for material definition
- Crystal shape determination as convex hull
- Monte-Carlo absorption correction
- Twin reflections
Property

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>Intensity</th>
<th>skew(Intensity)</th>
<th>transmission</th>
<th>Lorentz Factor</th>
<th>numbr</th>
<th>valid</th>
<th>unit cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>-10</td>
<td>118824</td>
<td>644573</td>
<td>1</td>
<td>2.35065</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-13</td>
<td>1</td>
<td>638539</td>
<td>1676.02</td>
<td>1</td>
<td>1.76136</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-8</td>
<td>8</td>
<td>303042</td>
<td>953.660</td>
<td>1</td>
<td>2.66562</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>-4</td>
<td>106266</td>
<td>560.285</td>
<td>1</td>
<td>1.54993</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-12</td>
<td>-9</td>
<td>37788.8</td>
<td>411.118</td>
<td>1</td>
<td>1.78863</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-7</td>
<td>3</td>
<td>31010.6</td>
<td>291.511</td>
<td>1</td>
<td>2.97585</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>-6</td>
<td>157179</td>
<td>960.077</td>
<td>1</td>
<td>2.38423</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>-11</td>
<td>8421.36</td>
<td>124.655</td>
<td>1</td>
<td>2.21115</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>-10</td>
<td>10899.7</td>
<td>145.691</td>
<td>1</td>
<td>4.38431</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>-12</td>
<td>21588.7</td>
<td>1020.5</td>
<td>1</td>
<td>1.68841</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>-10</td>
<td>281830</td>
<td>1217.03</td>
<td>1</td>
<td>1.52226</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-9</td>
<td>30981.7</td>
<td>321.692</td>
<td>1</td>
<td>2.86413</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>602183</td>
<td>1160.90</td>
<td>1</td>
<td>3.06460</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

nsxtool: Data Analysis for Crystal Diffraction
WIP and Planned Features

- Import/export using nexus/hdf5 format
- Improved weak peak integration
- Intensity scaling for merged data sets
- Collection strategy
- GUI redesign/rewrite
- Python bindings for nsxlib
- Migrate from XML to YAML to improve readability
- Other instruments?