BornAgain framework
EXPERIMENT PLANNING, SIMULATION AND FITTING FOR GISAS AND REFLECTOMETRY

Jonathan Fisher, Marina Ganeva, Gennady Pospelov
Walter Van Herck, Joachim Wuttke and Dmitry Yurov

JCNS WORKSHOP 2018, 29 Oct - 1 Nov, Tutzing, Germany
Outline

This talk
○ Introduction
○ Software architecture
○ Functionality overview
○ What’s new
○ Demo
○ Project infrastructure
○ Future plans

Talk of Walter Van Herck
○ BornAgain use cases
Scientific computing group at MLZ

Heinz Maier-Leibnitz Zentrum (MLZ) in Garching (Munich)

FRM II
20 MW neutron source

More than 30 instruments
Including MARIA, REFSANS, NREX reflectometers

Scientific Computing Group, group leader Dr. J. Wuttke
- Develop and maintain software for data reduction and analysis

BornAgain: GISAS simulation and fitting software
- Support for polarized neutrons
- For both expert and novice users
- Extensible: reflectivity, off-specular scans

Project was initiated by Thomas Brückel and Sasha Ioffe
Grazing incidence small angle scattering

GISAS specifics
- Surface sensitive non-destructive technique
- Large area coverage, statistical information
- Reflected and transmitted waves interfere
- Tunable depth probe by changing incident angle

Simulation
- Intensity is calculated from known sample structure using Distorted Wave Born approximation

\[
\frac{d\sigma}{d\Omega} = \langle |F_{DWBA}|^2 \rangle S(q_\parallel)
\]
- Introduction
- Software architecture
- Functionality overview
- What’s new
- Demo
- Project infrastructure
- Future plans
Software architecture

- Open source, GPL3 license, 200k lines of code
- Multi platform: Windows, Mac OS, Linux
- C++ kernel for simulation/fitting, Python bindings, GUI

Diagram:

- **User**
 - **script.py**
 - **Python bindings**
 - **C++ kernel**
 - External dependencies: Eigen, fftw3, GSL
 - **External dependencies:**
 - Eigen, fftw3, GSL
 - **Standalone**
 - GUI
 - External dependencies: Qt5
Object oriented approach

- Sample, beam and detector are defined via building blocks – classes
- Blocks are combined by the user into a hierarchical tree representing a simulation
Sample construction in GUI
import bornagain as ba

def get_sample():
 # defining materials
 air = ba.HomogeneousMaterial("Air", 0.0, 0.0)
 substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
 gold = ba.HomogeneousMaterial("Gold", 6e-4, 2e-8)

 # creating particles
 cylinder_ff = ba.FormFactorCylinder(5*nm, 5*nm)
 cylinder = ba.Particle(gold, cylinder_ff)

 layout = ba.ParticleLayout()
 layout.addParticle(cylinder, 1.0)

 air_layer = ba.Layer(air)
 air_layer.addLayout(layout)
 substrate_layer = ba.Layer(substrate)

 multi_layer = ba.MultiLayer()
 multi_layer.addLayer(air_layer)
 multi_layer.addLayer(substrate_layer)

 return multi_layer
- Introduction
- Software architecture
- **Functionality overview**
- What’s new
- Demo
- Project infrastructure
- Future plans
Functionality overview

- X-rays, non-polarized and polarized neutrons
- Arbitrary number of layers
- Rough interfaces
- Simple and composite particles
- Correlated positions
- Nanoparticle assemblies
- Off-specular and specular setups
- Instrument effects
Available shapes

Every shape can be rotated in all 3 directions
- $F(q)$ validated against complex q
Complex shapes

Core shell particles

Particles with size distribution
With possibility to link parameters

Particle compositions
collection of particles with fixed inter-particle distance
coherent interference
BornAgain simulation vs experiment

Disordered Ag nanoparticles

Ag/PTFE/HMDSO nanocomposite, experiment at GALAXI

Model:
- nanoparticles with log-normal size distribution
- paracrystal interference, size-space correlation approximation
BornAgain simulation vs experiment

Hexagonally ordered CoFeO$_4$ nanoparticles

Experiment: A. Qdemat, E. Kentzinger et. al., GALAXI

Model:
- nanoparticles in the hexagonal lattice
- local monodisperse approximation
Introduction
Software architecture
Functionality overview
What’s new
Demo
Project infrastructure
Future plans
Release history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Jan 2015</td>
<td>Graphical user interface, website bornagainproject.org</td>
</tr>
<tr>
<td>1.1</td>
<td>Apr 2015</td>
<td>New form factors, beam divergence in GUI, export GUI to Python</td>
</tr>
<tr>
<td>1.2</td>
<td>Jun 2015</td>
<td>Working on user manual, GUI real time</td>
</tr>
<tr>
<td>1.3</td>
<td>Jul 2015</td>
<td>New functional test machinery, new tutorials</td>
</tr>
<tr>
<td>1.4</td>
<td>Nov 2015</td>
<td>Rectangular detector, genetic fitting, fitting along slices, tutorials</td>
</tr>
<tr>
<td>1.5</td>
<td>Feb 2016</td>
<td>C++11 migration, GUI mask editor, new tutorials</td>
</tr>
<tr>
<td>1.6</td>
<td>Jun 2016</td>
<td>Python 3, GUI fitting beta, Windows 32 -> Windows 64</td>
</tr>
<tr>
<td>1.7</td>
<td>Nov 2016</td>
<td>BornAgain school and user meeting, specular peak, GitHub migration, new build server</td>
</tr>
<tr>
<td>1.8</td>
<td>Apr 2017</td>
<td>Graded interfaces, improved fitting support in GUI</td>
</tr>
<tr>
<td>1.9</td>
<td>Jul 2017</td>
<td>New magnetization formalism, GUI saving mechanism</td>
</tr>
<tr>
<td>1.10</td>
<td>Oct 2017</td>
<td>Mesocrystals in GUI, Plugin mechanism</td>
</tr>
<tr>
<td>1.11</td>
<td>Mar 2018</td>
<td>Off-specular simulation in GUI, specular in Core, SLD materials</td>
</tr>
<tr>
<td>1.12</td>
<td>May 2018</td>
<td>Specular simulation in GUI, depth probe simulation, new web site</td>
</tr>
<tr>
<td>1.13</td>
<td>Oct 2018</td>
<td>Fitting reflectometry in GUI, 3D View in GUI, external minimizers</td>
</tr>
</tbody>
</table>
Release history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Jan 2015</td>
<td>Graphical user interface, website bornagainproject.org</td>
</tr>
<tr>
<td>1.1</td>
<td>Apr 2015</td>
<td>New form factors, beam divergence in GUI, export GUI to Python</td>
</tr>
<tr>
<td>1.2</td>
<td>Jun 2015</td>
<td>Working on user manual, GUI real time</td>
</tr>
<tr>
<td>1.3</td>
<td>Jul 2015</td>
<td>New functional test machinery, new tutorials</td>
</tr>
<tr>
<td>1.4</td>
<td>Nov 2015</td>
<td>Rectangular detector, genetic fitting, fitting along slices, tutorials</td>
</tr>
<tr>
<td>1.5</td>
<td>Feb 2016</td>
<td>C++11 migration, GUI mask editor, new tutorials</td>
</tr>
<tr>
<td>1.6</td>
<td>Jun 2016</td>
<td>Python 3, GUI fitting beta, Windows 32 -> Windows 64</td>
</tr>
<tr>
<td>1.7</td>
<td>Nov 2016</td>
<td>BornAgain school and user meeting, specular peak, GitHub migration, new build server</td>
</tr>
<tr>
<td>1.8</td>
<td>Apr 2017</td>
<td>Graded interfaces, improved fitting support in GUI</td>
</tr>
<tr>
<td>1.9</td>
<td>Jul 2017</td>
<td>New magnetization formalism, GUI saving mechanism</td>
</tr>
<tr>
<td>1.10</td>
<td>Oct 2017</td>
<td>Mesocrystals in GUI, Plugin mechanism</td>
</tr>
<tr>
<td>1.11</td>
<td>Mar 2018</td>
<td>Off-specular simulation in GUI, specular in Core, SLD materials</td>
</tr>
<tr>
<td>1.12</td>
<td>May 2018</td>
<td>Specular simulation in GUI, depth probe simulation, new web site</td>
</tr>
<tr>
<td>1.13</td>
<td>Oct 2018</td>
<td>Fitting reflectometry in GUI, 3D View in GUI, external minimizers</td>
</tr>
</tbody>
</table>
Graded layer approximation

NEW IN RELEASE 1.8, APR 17

- Correlation between particles in different layers
- Particles crossing layer interfaces
- Dense particles: average material for Fresnel calculations
- Graded layer approximation
Magnetic nanoparticles

NEW IN RELEASE 1.9, JUL 17

Model includes

- Materials with uniform magnetization density
- Can be assigned to any particle shape
- Neutron beam polarization vector
- Neutron analyzer direction, efficiency and transmission
Magnetic nanoparticles
NEW IN RELEASE 1.9, JUL 17

Model includes

- Materials with uniform magnetization density
- Can be assigned to any particle shape
- Neutron beam polarization vector
- Neutron analyzer direction, efficiency and transmission
Mesocrystals in GUI
NEW IN RELEASE 1.10, OCT 17

Model includes

- Outer shape of the mesocrystal
- Lattice vectors
- Lattice basis consisting of regular particles at their positions

In collaboration with A. Glavic and E. Josten
New material type
NEW IN RELEASE 1.11, MAR 18

Material types in BornAgain
- Homogeneous material based on refractive index
- Homogeneous material based on scattering length density NEW
Finite 2d lattices
NEW IN RELEASE 1.12, MAY 18

Model includes
- Interference function of finite 2D lattice
- Possibility to compose finite lattice into a superlattice
- Now in GUI too

![Diagram of finite 2D lattices](image)
BornAgain for reflectometry

SINE2020 initiative
- Provide fitting of GISAS, specular, off-specular data in a single framework

Starting point
- BornAgain allows to access full R,T info
- Have specular peak depicted on top of 2D GISAS image
- Setup off-specular geometries
- Allows flexibly assemble models
- Infrastructure and user community

Planned reflectometry features
- Beam size effects
- Footprint correction
- Material library, SLD profiles
- Roughness models
- Polarized reflectometry and ToF
BornAgain for reflectometry

NEW IN RELEASE 1.12, MAY 18

Reflectometry simulation features

- New type of instrument: `SpecularInstrument`
- Instrument effects: wavelength and angular beam divergence, footprint corrections
- Full accessibility of all simulation features through GUI
- Possibility to fit reflectometry data via PythonAPI

\[\text{Reflectivity with and without beam divergence} \] \[\text{Reflectivity with and without footprint correction} \]
Depth probe simulation

NEW IN RELEASE 1.12, MAY 18

Model includes

- Evanescent wave intensity in the bulk of the sample
- Instrument resolution effects available
- For the moment available via Python API only

\[I_{\mathrm{ew}}(z) = |\psi(z)|^2 = \left| R \cdot e^{ikz_\perp} + T \cdot e^{-ikz_\perp} \right|^2 \]
Multilayer Ti/Pt resonator

H. Frielinghaus, et. al., NIM A 871 (2017) 72–76
Fitting improvements
NEW IN RELEASE 1.13, OCT 18

On Python side
- Possibility to use external minimizers (bumps, lmfit, etc)

On GUI Side
- Beta version of reflectometry data fitting
Real-space visualization in GUI

NEW IN RELEASE 1.13, OCT 18
- Introduction
- Software architecture
- Functionality overview
- What’s new
- Demo
- **Project infrastructure**
- Future plans
Lines of code
Development infrastructure

- Development organization
 - Source control: github
 - Code review: github
 - Issue tracking: redmine
 - Management of release cycles: redmine

- Code stability
 - Continuous integration: github, travis, appveyor, buildbot
 - Unit testing: google test
 - Functional tests: 300 exemplary simulations

- Documentation
 - Website: github, hugo
 - Theory manual: pdf, html
 - API documentation: doxygen
BornAgain developers

Scientific Computing Group of MLZ, group leader Dr. J. Wuttke

Main developers
- Gennady Pospelov
- Walter Van Herck

Co-developers
- Jan Burle
- Jonathan Fisher
- Marina Ganeva
- Joachim Wutke
- Dmitry Yurov
- Celine Durniak
- Juan Manuel Carmona Loaiza

Student interns
- Rebecca Brydon
- Sezer Karaca
- Abhishek Khanna
- Mohammad Mahadi Hasan
- David Li
- Ivonna Li
- Anik Halder
GitHub workflow

github.com/scgmlz/BornAgain

GitHub builds
• 1 MacOS
• 1 Win
• 1 Linux

Code review

BornAgain remote copy

BornAgain central repo

BornAgain remote copy

GitHub cloud

Local computers

Contributor #1

Nightly builds
• 2 MacOS
• 2 Win
• 6 Linux

Contributor #2

Functional tests

Functional tests
• 2 MacOS
• 2 Win
• 6 Linux
Future plans

- Specular reflectivity
 - SLD profiles
 - Material library
 - Fitting workflow in GUI
 - Polarized reflectometry and ToF

- GUI functionality
 - Undo/redo
 - Project files back compatibility
 - Plugin mechanism

- Model for magnetic roughness/domains

- User requests
BornAgain

Open-source software package to simulate and fit neutron and x-ray small-angle scattering at grazing incidence.

Its name, BornAgain, indicates the central role of the distorted wave Born approximation in the physical description of the scattering process. The software provides a generic framework for modeling multilayer samples with smooth or rough interfaces and with various types of embedded nanoparticles.

Currently v1.12.0

Get started Download
We are organizing the 2nd BornAgain School and User Meeting.

19-21 December, 2018, in Munich.

Subscribe to our mailing list to get notified.
Thank you!

GitHub: github.com/scgmlz/BornAgain
Email: contact@bornagainproject.org
Website: bornagainproject.org
BACKUP
BornAgain for reflectometry
NEW IN RELEASE 1.12, MAY 18

Fitting experimental data
- For the moment, available through PythonAPI only

Ag nanoparticles on silicon substrate with SiO2 coating

Microgel particles on silicon substrate in D2O environment