BornAgain

A simulation and fitting framework for nuclear and magnetic GISANS

Jan Burle, Jonathan M. Fisher, Marina Ganeva, Gennady Pospelov, Walter Van Herck and Joachim Wuttke
Our group and BornAgain

- Heinz Maier-Leibnitz Zentrum (MLZ) in Garching (Munich)

- Scientific Computing Group: develop and maintain software for data reduction and analysis

- BornAgain: GISAS simulation and fitting software:
 - For both expert and novice users
 - Support for polarized neutrons
 - Extensible: reflectivity, off-specular scans, ...
GISAS setup
GISAS specifics

- In-plane and out-of-plane information
- Surface sensitivity (as in GID)
- Length scales of SAS
- Increased scattering volume
- Reflected and transmitted waves interfere
- Software needed to arrive at quantitative results (simulate & fit)
Waveguide effect
DWBA

- Ideally: solve the Lippmann-Schwinger equation
- Distorted Wave Born Approximation for multilayers
- Exact solution for effectively one-dimensional system
- Everything else as first order perturbation (nanoparticles, roughness)
Welcome to BornAgain

BornAgain is a software package to simulate and fit small-angle scattering at grazing incidence. It supports analysis of both X-ray (GISAXS) and neutron (GISANS) data. Its name, BornAgain, indicates the central role of the distorted wave Born approximation in the physical description of the scattering process. The software provides a generic framework for modeling multilayer samples with smooth or rough interfaces and with various types of embedded nanoparticles.

Read more
Authors

- Main developers
 - Gennady Pospelov
 - Walter Van Herck

- Co-developers
 - Jan Burle
 - Jonathan Fisher
 - Marina Ganeva
 - Joachim Wuttke
 - Céline Durniak

- Student interns
 - Rebecca Brydon
 - Sezer Karaca
 - Abhishek Khanna
 - Mohammad Mahadi Hasan
 - David Li
 - Ivonna Li
Lines of code

- PythonAPI
- GUI
- Unit Tests
- Functional Tests
- Core
Release history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Jan 2015</td>
<td>Graphical user interface, website</td>
</tr>
<tr>
<td>1.1</td>
<td>Apr 2015</td>
<td>New form factors, beam divergence in GUI, export GUI to Python</td>
</tr>
<tr>
<td>1.2</td>
<td>Jun 2015</td>
<td>Working on user manual, GUI real time</td>
</tr>
<tr>
<td>1.3</td>
<td>Jul 2015</td>
<td>New functional test machinery, new tutorials</td>
</tr>
<tr>
<td>1.4</td>
<td>Nov 2015</td>
<td>Rectangular detector, genetic fitting, fitting along slices, new tutorials</td>
</tr>
<tr>
<td>1.5</td>
<td>Feb 2016</td>
<td>C++11 migration, GUI mask editor, new tutorials</td>
</tr>
<tr>
<td>1.6</td>
<td>Jun 2016</td>
<td>Python 3, GUI fitting beta, Windows 32 -> Windows 64</td>
</tr>
<tr>
<td>1.7</td>
<td>Nov 2016</td>
<td>BornAgain school and user meeting, specular peak, GitHub migration, new build server</td>
</tr>
<tr>
<td>1.8</td>
<td>Apr 2017</td>
<td>Graded interfaces, improved fitting support in GUI</td>
</tr>
<tr>
<td>1.9</td>
<td>Jul 2017</td>
<td>Magnetization formalism, GUI saving mechanism</td>
</tr>
</tbody>
</table>
BornAgain usage

- Open-source
- Multi-platform
- C++/Python

12.07.2017

User

script.py

Python bindings

C++ kernel

External dependencies:
Eigen, fftw3, GSL

Standalone GUI

External dependencies:
Qt5
BornAgain models

• Sample structure
BornAgain functionality

- X-rays, non-polarized and polarized neutrons
- Arbitrary number of layers
- Rough interfaces
- Simple and composite particles
- Correlated positions
- Nanoparticle assemblies
- Off-specular geometry, beam divergence
Recent functionality

- Correlation between particles in different layers
Recent functionality

- Correlation between particles in different layers
- Particles crossing layer interfaces
Recent functionality

- Correlation between particles in different layers
- Particles crossing layer interfaces
- Dense particles: average material for Fresnel calculations
Recent functionality

- Correlation between particles in different layers
- Particles crossing layer interfaces
- Dense particles: average material for Fresnel calculations
- Graded layer approximation
Recent functionality

- Uniform B-field versus uniform magnetization density

- Currently only available through Python API
- Validation with simple, well-known

[Diagram of magnetic field]
Future plans

- GUI functionality:
 - include polarized neutron scattering
 - further improvements in UX
- New sample models (e.g. domain structures)
- Simulations beyond DWBA (e.g. for gratings)
- Fitting:
 - Reduce time to find (global) minimum
 - Reliability of (global) minimum
- Documentation
- Further validation (wrt. experiments and other software)
- Improve modelling of experimental conditions
- Real-space visualization
- Reflectivity: calculations + GUI integration (SINE2020)
Real-space visualization

- Improve visual feedback during sample construction
- Visualize abstract entities like interference function

Artistic rendering

Representation in GUI and Python

```python
# defining materials
m_air = HomogeneousMaterial("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial("Particle", 6e-4, 2e-8)

# collection of particles
particle = Particle([cylinder, cylinder_FF, prism])
particle_layout = ParticleLayout()
particle_layout.addParticle(particle)
particle_layout.addParticle(particle)

# air layer with particles and substrate form multi layer
air_layer = Layer(m_air)
air_layer.addLayout(particle_layout)
substrate_layer = Layer(m_substrate)
multi_layer = MultiLayer()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
```
Reflectometry

- BornAgain for reflectometry (SINE2020)
 - BornAgain allows to access full R,T info
 - Have simple specular peak depicted on top of 2D GISAS image
 - Setup off-specular geometries
 - Allows flexibly assemble models
 - Infrastructure and user community

- Planned
 - Beam size effects
 - Footprint correction
 - Rocking curves, omega scans
 - SLD profiles (fitted across slices)
 - Material library
 - Roughness models
User community

- External contributors
- Regularly making concrete suggestions
- Regularly finding and reporting bugs
- Writing us mails
- Regularly running BornAgain
- Generating user requests
- Appearing in statistics
- Visiting website
Development infrastructure

- Development organization:
 - Source control: github
 - Code review: github
 - Issue tracking: Redmine
 - Management of release cycles: Redmine

- Code stability:
 - Continuous integration: github, buildbot
 - Unit testing: googletest
 - Functional tests: ad hoc

- Documentation:
 - Website: Drupal
 - Theory manual
 - API documentation: Doxygen
Demo
Thank you!

www.bornagainproject.org
github.com/scgmlz/BornAgain